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Abstract. This document is part of Visualis help, and explores the well
known 3-body problem, presenting the examples available in Visualis

Dynamics, along with mathematical derivations. Visualis offers an simple

platform for simulating many college level problems, making it easier to
verify results and deepen understanding through hands-on learning.

1. Well known chaotic problem

The 3-body problem is a classic problem in celestial mechanics, involving
prediction of the motion of three (or more) planets moving under the influence
of their mutual gravitation. This scenario is far more complex than the two-
body problem, which has a straightforward, predictable solution, allowing for
precise predictions of motions.

1.1. Difficult to Solve Analytically. We can highlight 3 main ideas :

Non-linearity of Gravitational Interactions : The equations governing
the gravitational interactions between three masses are highly non-linear. This
makes it impossible to find a general, closed-form solution that describes the
motion of the planets over time.

Sensitivity to Initial Conditions : The three-body system is highly
sensitive to the exact initial conditions (positions and velocities, even masses).
Any tiny change in the initial setup can lead to vastly different outcomes.
This sensitivity (known as the ”butterfly effect”) means that even if we had
a general set of solutions, they would be practically useless without knowing
exact initial conditions.

Infinite Number of Possible Configurations : With three bodies, the
number of possible configurations is infinite, depending on masses, start posi-
tion and velocities. This is very different from a 2 bodies/planets configuration.
This infinite possibility space further complicates finding any one-size-fits-all
analytical solution.
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1.2. Indicators of Chaos. In other terms :

Chaotic Behavior : The three-body problem is a perfect example of a
chaotic system, where the trajectories of the planets can become unpredictably
erratic over time, especially in configurations where the masses can get closer
to each other, due to 1

r2 ratio. So out of some very precise initial conditions,
a gravitational system with more than 2 planets is characterized by a lack of
long-term predictability.

Initial Conditions : As said a hallmark of chaotic systems is their ex-
treme sensitive dependence on initial conditions. Arbitrarily small changes in
the starting state of the system will lead to completely different outcomes,
preventing an accurate closed-form solution.

Lack of Repeatable Patterns : The trajectories of the bodies do not set-
tle into stable, repeatable patterns (except in very special or contrived cases).
In most cases their paths will appear erratic, until reaching a simplified 2-
body-like configuration.

1.3. Stability in the Universe.

Despite the inherent chaos and unpredictability in this problem, stable con-
figurations obviously do exist in the universe ! These configurations rely on
certain ratios of masses and distances that reduce the system’s sensitivity to
initial conditions. For example:

Hierarchical Systems : Systems where two planets are close together and
the third is much farther away can approximate a stable two-body problem
for the close pair, with the distant mass having a minimal perturbative effect.
This configuration can remain stable over millions of years.

Resonant Orbits : In some cases, planets can fall into resonant orbits,
where their orbital periods form simple ratios. This resonance can help stabilize
the system by preventing close encounters that could disrupt the orbits.

Special Solutions : Certain specific solutions to the three-body problem,
known as Lagrange points and the non-intuitive figure-eight orbit (discovered
numerically) [4], demonstrate stability under specific conditions.

In the Universe, stable configurations emerged through a process of ”natural
selection”, where unstable arrangements eventually disappeared over time.
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2. Examples in Visualis

As said before some special cases can be derived analytically, let’s explore
two examples.

2.1. Semi-stable but highly chaotic 3 masses. 3-planets.vis file

This one is very theoretical, highly unstable, so you’ll never find it in real
world ! We consider 3 perfectly equal masses that rotate in a circular orbit
while maintaining a perfectly equilateral triangle configuration. It’s known as
”Lagrange’s equilateral triangle homothetic solution”.

For our case we can consider that the three equal masses M are known,
as well as their distance, and we can try to find the stable orbital velocity v
required to maintain this configuration. (And we want to derive the equations
of motion from Newton’s law).

2.1.1. Coordinate System and Initial Setup.

Center of Mass :

Since all masses are equal, the center of mass C of the system is at the
centroid of the equilateral triangle.

Positions of the Masses :

We place the masses at positions that rotate uniformly around C with an-
gular velocity ω. At any time t :

(1) Mass M1 :

r⃗1(t) = r cos(ωt)̂i+ r sin(ωt)ĵ

(2) Mass M2 :

r⃗2(t) = r cos

(
ωt+

2π

3

)
î+ r sin

(
ωt+

2π

3

)
ĵ
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(3) Mass M3 :

r⃗3(t) = r cos

(
ωt+

4π

3

)
î+ r sin

(
ωt+

4π

3

)
ĵ

where r is the distance from each mass to the center C.

Relationship Between r and Side Length d :

In an equilateral triangle :

r =
d√
3

Gravitational Force Between Two Masses

The gravitational force between any two masses M separated by d is :

F = G
M2

d2

Net Gravitational Force on Mass M1

We need to find the vector sum of the gravitational forces acting on M1 due
to M2 and M3.

Positions at t = 0 : r⃗1 = (r, 0), r⃗2 = r
(
− 1

2 ,
√
3
2

)
, r⃗3 = r

(
− 1

2 ,−
√
3
2

)
Vectors from M1 to M2 and M3 :

r⃗12 = r⃗2 − r⃗1 = r

(
−3

2
,

√
3

2

)

r⃗13 = r⃗3 − r⃗1 = r

(
−3

2
,−

√
3

2

)

Unit Vectors :

r̂12 =
r⃗12
|r⃗12|

=

(
−
√
3

2
,
1

2

)

r̂13 =
r⃗13
|r⃗13|

=

(
−
√
3

2
,−1

2

)
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Gravitational Forces :

F⃗12 = G
M2

|r⃗12|2
r̂12 = G

M2

3r2
r̂12

F⃗13 = G
M2

|r⃗13|2
r̂13 = G

M2

3r2
r̂13

Net Gravitational Force on M1 :

F⃗1 = F⃗12 + F⃗13 = G
M2

3r2
(r̂12 + r̂13)

Calculating r̂12 + r̂13 :

r̂12 + r̂13 =

(
−
√
3

2
−

√
3

2
,
1

2
− 1

2

)
=
(
−
√
3, 0
)

Net Force :

F⃗1 = G
M2

3r2

(
−
√
3, 0
)

Since the force is attractive :

F⃗1 = −G
M2

3r2

(
−
√
3, 0
)
= G

M2

3r2

√
3̂i

Simplify :

F1x = G
M2

√
3

3r2

Centripetal Force and Equations of Motion :

Mass M1 moves in a circle of radius r with angular velocity ω :

acentripetal = rω2

Newton’s Second Law :

Set the net gravitational force equal to the centripetal force required for
circular motion :

Macentripetal = F1x

Mrω2 = G
M2

√
3

3r2

Simplify :

rω2 = G
M

√
3

3r2

Solving for Angular Velocity ω :

ω2 =
GM

√
3

3r3
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Since
√
3
3 = 1√

3
:

ω =

√
GM√
3r3

Solving for Linear Velocity v :

The linear velocity v is : v = rω

Substitute ω :

v = r

√
GM√
3r3

=

√
GM√
3r

Final Result

The stable linear velocity v required for each mass to maintain the rotating
equilateral triangle configuration is :

v =

√
1√
3

GM

r

But d =
√
3 r. Hence r = d/

√
3. Substitute r = d/

√
3 :

v =

√
1√
3

GM

(d/
√
3)

=

√ √
3GM

3
(
d/

√
3
) =

√√
3GM

√
3

3 d
=

√
3GM

3 d
=

√
GM

d
.

Therefore, for three equal masses forming an equilateral triangle of side d,
each mass orbits with the velocity :

v =

√
GM

d

And the angular velocity is :

ω =

√
3GM

d3
with v = r ω

Position as a function of time :

r⃗i(t) = r cos (ωt+ θi) î+ r sin (ωt+ θi) ĵ

where θi = 0, 2π
3 , 4π

3 for M1, M2, and M3, respectively.
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2.2. Stable Hierarchical Systems example. hierarchical 3-planets.vis

Let’s consider the following more realistic, almost stable case :

• Three masses M1, M2, and M3 are all on (or start on) a common line
(the x-axis, say).

• The inner binary (masses M1 and M2) is in a stable, circular orbit
about their common center of mass.

• The outer mass M3 is on a much larger quasi-circular orbit around the
center of mass of M1 and M2.

• The massM3 is relatively small compared toM1 andM2 so its influence
on the inner binary orbit is negligible to first order.

With these assumptions, we can approximate the three-body configuration
as a hierarchical triple system :

• The inner binary acts like a two-body problem.

• The outer mass M3 orbits the combined mass of M1 and M2 at a large
distance.

Step 1 : Inner Binary Circular Orbit

Setup for the Inner Binary :

• Let the distance between M1 and M2 be a.

• Without loss of generality, place the center of mass (CM) of the system
at the origin.

• Let M = M1 +M2.
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The center of mass condition is :

M1x1 +M2x2 = 0.

If we choose a coordinate system so that M1 and M2 are initially aligned
along the x-axis and orbit in the xy-plane, we have :

x1 = −M2

M
a, x2 =

M1

M
a

Since they are in a circular orbit around their common center of mass, each
mass experiences centripetal force provided by the gravitational attraction of
the other. For M1 :

Centripetal force on M1 = M1a1ω
2
12

where a1 = M2

M a is the orbital radius of M1 about the CM. The gravitational
force on M1 from M2 is :

F12 =
GM1M2

a2

Equating centripetal and gravitational forces :

M1a1ω
2
12 =

GM1M2

a2

Canceling M1 and substituting a1 = M2

M a :

M2

M
aω2

12 =
GM2

a2
=⇒ ω2

12 =
G(M1 +M2)

a3

Thus, the angular velocity of the inner binary is :

ω12 =

√
G(M1 +M2)

a3

Parametric Equations for the Inner Binary :

We can write the positions as functions of time :

x1(t) = −M2

M
a cos(ω12t), y1(t) = −M2

M
a sin(ω12t),

x2(t) =
M1

M
a cos(ω12t), y2(t) =

M1

M
a sin(ω12t).

Step 2 : Outer Orbit of M3

Now, consider the small mass M3 orbiting at a large distance R from the
CM of M1 +M2. Because M3 is far away, the inner binary appears as a single
mass M = M1 +M2 located at the origin (to a good approximation, ignoring
small perturbations).

For a circular orbit of M3 around mass M :

G(M1 +M2)M3

R2
= M3Rω2

3
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Canceling M3 :

ω2
3 =

G(M1 +M2)

R3

Thus :

ω3 =

√
G(M1 +M2)

R3

Parametric Equations for M3 : assuming M3 also starts on the positive
x-axis and orbits in the same plane :

x3(t) = R cos(ω3t), y3(t) = R sin(ω3t).

Step 3 : Combine the Motions

We now have a set of stable, closed-form solutions for the positions of all
three masses assuming circular orbits :

Inner Binary :

x1(t) = −M2

M
a cos(ω12t), y1(t) = −M2

M
a sin(ω12t),

x2(t) =
M1

M
a cos(ω12t), y2(t) =

M1

M
a sin(ω12t).

Outer Mass :

x3(t) = R cos(ω3t), y3(t) = R sin(ω3t).

Given the masses and the distances a (inner separation) and R (outer or-
bital radius), we have determined the angular velocities ω12 and ω3 directly
from Newton’s law of gravitation for circular orbits. This set of equations pro-
vides a stable, analytic representation of the system’s motion under the stated
assumptions.

2.2.1. Notes on Stability and Perturbations. The solution is based on strict
circular orbits and neglects the back-reaction of M3 on the inner binary. In
practice, there will be perturbations. If M3 is truly small compared to M1 and
M2, these perturbations remain small, and the motion is quasi-stable for very
long times. More complicated analytical forms exist for hierarchical triples,
but the above provides a simple first-order approximation.

2.2.2. Summary. By assuming that the system consists of an inner binary in
a perfectly circular orbit and an outer mass M3 orbiting at a large distance,
we reduce the three-planets problem to a pair of nested two-planets problems.
Under these conditions, we can use the standard formulae for circular orbital
motion to write down exact expressions for the angular velocities and positions
as functions of time. This yields a analytical equation of motion for all three
planets, given their masses and orbital radii.
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2.2.3. Compute numerical values for Visualis Example. Let’s go through an
example of how to assign initial velocities to the given system. In Visualis
scene we have :

• The two big masses M1 and M2 (1× 1023 kg each), located at (0,−5×
106) and (0,+5× 106) respectively, orbit (approximately) about their
mutual center in a near-circular “inner binary”.

• The smaller mass M3 (1 × 1021 kg) at (0,+6 × 107) orbits (approxi-
mately) on a larger circle around the combined mass of M1 +M2.

We will ignore any small residual drift of the true center of mass (CM) and
also neglect the slight pull of M3 on M1 and M2. Under these simplifying
assumptions, we get a quasi-stable triple system.

The Basic Configuration

• Masses : M1 = M2 = 1.0× 1023 kg, M3 = 1.0× 1021 kg

• Initial Positions (in meters, all on the y-axis) :

M1 : (0, −5× 106), M2 : (0, +5× 106), M3 : (0, +6× 107)

• Velocities (in m/s, all on the x-axis) : M1 going left (negative x) so it
circles clockwise if viewed from above, M2 going right (positive x), M3

going right (positive x).

We will treat (0, 0) as an approximate center for the inner binary and let
M3 orbit further out. Strictly, the true center of mass is a bit above (0, 0), but
because M3 ≪ M1,M2, the shift is small enough that the following circular
speeds still give a decent first approximation.

Inner Binary M1 −M2

For two equal masses M1 = M2 separated by a = 1 × 107 m, the usual
circular-orbit formula (about their midpoint) gives the orbital angular velocity

ω12 =

√
G (M1 +M2)

a3
=

√
G (2M1)

(1× 107)3
(since M1 = M2)

With :

G ≈ 6.6743× 10−11, M1 = 1.0× 1023, a = 1.0× 107

we get :

ω2
12 = 6.6743×10−11 × 2× 1023

(1× 107)3
= 6.6743×10−11 ×2× 1023

1021
= 1.33486×1013−11−21 = 1.33486×10−8

ω12 ≈
√
1.33486× 10−8 ≈ 1.155× 10−4 rad/s

Each mass is half the distance a/2 = 5× 106 from the midpoint. Thus the
circular speed for each big mass is

v12 = ω12 × a

2
= (1.155× 10−4) × (5× 106) ≈ 578m/s
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In the presence of M3, the ”true” center of mass is slightly above the mid-
point of M1 and M2. In fact the actual center of mass is at :

yCM =
−5× 106 + 5× 106 + 6× 107

M1 +M2 +M3
≈ 0 + 6× 1028

2× 1023 + 1× 1021
≈ 3× 105 m.

That is only 300 km above the midpoint, compared to a 5,000,000m sepa-
ration on each side for the big masses.

Hence for M1, its actual orbital radius about the ”true” CM is about
5,000,000 + 300,000 = 5.3× 106 m, and similarly 4.7× 106 m for M2.

Recomputing the centripetal speeds with extra 0.3Mm distance yields :

• M1: v1 ≈ 590 – 600m/s (to the left)

• M2: v2 ≈ 560 ishm/s (to the right)

So in the simulator we should get roughly :

v1 ≈ −595m/s and v2 ≈ +560m/s

Outer Orbit M3

Now treat M1 + M2 ≈ 2 × 1023 kg as a single central mass for M3. Its
distance from that (approximate) center is ≈ 6× 107 − 3× 105 = 5.97× 107 m.

By Kepler’s third law for a small body orbiting mass (M1 +M2) :

ω2
3 =

G (M1 +M2)

r33
,

v3 = ω3 r3 =

√
G (M1 +M2)

r3
.

Numerically, with M1 +M2 = 2× 1023 kg and r3 = 5.97× 107 m :

The gravitational parameter : G(M1 +M2) = 6.6743× 10−11 × 2× 1023 ≈
1.33486× 1013.

Hence :

v3 =

√
1.33486× 1013

5.97× 107
=
√
2.235× 105 ≈ 473m/s.

(direction : x positive, i.e. to the right, same sense of rotation as M2)

So a quite good approximate outer velocity for a stable orbit is :

v3 ≈ +473m/s
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Final Approximate Velocities

Putting it all together (and rounding slightly):

• M1 at (0, −5× 106) : v1 ≈ (−595, 0)m/s

• M2 at (0, +5× 106) : v2 ≈ (+560, 0)m/s

• M3 at (0, +6× 107) : v3 ≈ (+473, 0)m/s

With these values:

• M1 and M2 form a near-circular inner binary.

• M3 orbits farther out, as if around a central mass of M1 +M2.

• Because M3 is 100Ö lighter, its perturbation on the inner binary is
small, and the system can remain in a ”quasi-stable” configuration for
quite a long time (though not perfectly forever, since true three-body
motion always introduces some perturbations).

To go further we should fine-tune or numerically integrate the full three-body
equations to get the best initial conditions to keep the center of mass as sta-
tionary as possible and minimize orbital drift. But a first evaluation/overview,
the above velocities are a good first-order solution.
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