VISUALIS EXEMPLE - GRAVITY INSIDE SPHERE

FRANCOIS SAHY

1. GRAVITY INSIDE A MASSIVE SPHERE

The gravity inside a massive object decreases as we approach its center. This sample
scene in Visualis shows the intensity of the gravitational field around and inside a
massive sphere ; we see the values reaching zero when approaching the center.

(Note : the density there is nonetheless very high !)

At the sphere’s center, the gravitational field is intuitively null because we are at-
tracted equally by all points of the spherical mass around us. For other locations, the
intensity can be evaluated by integrating the contribution of each mass element :
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where :

G is the gravitational constant,

7 is the position vector of point P where we evaluate the field,

7 is the position vector of the mass element dm,

p is the mass density,

e Vs is the volume of the sphere.



1.1. Direct Integration.

We'll try here to derive the gravitational field inside a uniform sphere of radius R
and mass M by direct integration from Newton’s law !

1.1.1. Problem Setup.

For a point P at distance r from the sphere’s center (where r < R), we place P on
the z-axis at position (0,0,7) by symmetry.

The gravitational field from a mass element dm at position 7 is :
dm Fp — ’FI
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We assume uniform density = p = % .
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1.1.2. The Integral in Spherical Coordinates.

To use the symmetry we need to switch to spherical coordinates and perform a
volume integral.

With #p = (0,0, ) and spherical coordinates for 7 :

7p — 7| = /12 + 172 — 2r1’ cos 0’ (3)

By symmetry, only the z-component survives :
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1.1.3. Ewvaluating the Angular Integral.

This is a non-trivial integral because of singularities, but it can be done using sub-
stitutions.

Substituting u = cos 6’ :

I(rr) = / 1 o, (5)

1 (P2 4172 = 2rr'u)3/2

Let w(u) = % + 1'% — 2rr'u, so % = —2r¢”,

and consider the auxiliary function :
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Differentiating :
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Therefore the integral becomes :

10"y = LF () - P
For r’ < r:
F(1) = lr—_r;//r

After some algebra : F(1) — F(—1) = 2, s0 I(r,r') =

For ' > r : The calculation gives F(1) — F(—=1) =0, so I(r,r") = 0.

And therefore :
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1.1.4. Completing the Radial Integration.

Since the outer region contributes zero :
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Substituting p = % :

(The negative sign indicates the field points inward)
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So a simple linear decrease of the field as reaching the center !
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1.2. Key Insights.

1. The direct integration naturally proves the Shell Theorem : mass outside radius
r contributes zero to gravitation field at point P !

2. The tricky step is to correctly evaluating the angular integral using the auxiliary

function F(u) = u_\/%/ " which avoids many complexity.

1.2.1. Intuitive reasoning.

We can also find this result by simple geometrical reasoning. As said earlier when
considering symmetries we know that the gravitation field at the center will be null.
Since we’re convinced of this, as we also know that gravity at the sphere surface will

be %1\2/[ , we can suppose the simple linear ratio along distance r :
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Which is the same result as above !

(Recall : this is an approximation, for a very massive body like a planet the matter
is not uniformly distributed ; the density will be higher at center, so as one moves away
the gravity will increase faster at first, and then slower than with the linear model of
a uniform mass.)

But even with non-linear density, for points inside the sphere, we see that everything
works as if only the mass at a radius less than r contributes to the gravitational field
at that point !

Which lead us once again to the Shell Theorem !



2. CASE OF A SPHERICAL SHELL

For a hollow spherical shell where all mass M is distributed on the surface at radius
R, we can see in Visualis that we have :

So no gravity at all inside the sphere (!) The Shell Theorem gives us :

(r) = 0 for r < R (inside the shell)
= G for r > R (outside the shell)

2.1. Demonstration.

2.1.1. Integral on sphere surface.

Using spherical coordinates centered at the shell’s center, with P along the z-axis
at distance r from center :

The force from element dA = R?sindf d¢ is :
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where s is the distance from the element to P :

s=1/r2+ R2 —2rRcosf

By symmetry, only the z-component survives.

RcosO —r
s

We have the cosine of the angle between dF and the axis : cosa =



So the z-component of force is :

B GoR?sin 6 df do . Rcosf —r

dF,
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Integrating over the sphere :

do

P —27TGUR2/Tr sin@(Rcosf —r)
2= 3
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Using substitution @ = cosf, dr = —sin 6 df :

1
Rx —r
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This integral evaluates to zero !

2.1.2. Resolution in detail.

Let u =12+ R?>—2rRx (>0). Then dv = —du/(2rR) and Rx —r =

The limits = +1 map to u = (r F R)?. With those substitutions,

F, =
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Split and integrate term-by-term :
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Putting it together,
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Evaluate f at the two limits :
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(Because r < R we can drop the absolute values without changing signs.)
Therefore :
f(r+R)?) — f((r—R)?) =2R—-2R=0. (9)

No stray minus survives ; the two evaluations simply cancel. And so :
F.=0 (10)

Because every other direction is equivalent by symmetry, the total gravitational field
at P is zero :

g(P)=0 for all r < R.

This remarkable result shows that the gravitational field is exactly zero everywhere
inside a uniform spherical shell. This is true regardless of where inside the shell we
measure the field.

2.2. Physical interpretation.

The theorem can be understood by considering that for any point inside a spherical
shell, the gravitational attractions from opposite sides of the shell exactly cancel. While
closer portions of the shell exert stronger force per unit mass, there is less mass in those
closer portions (due to the solid angle effect), and these two effects precisely balance !



3. REVISIT INTEGRATION USING THE SHELL THEOREM

We can now get a far simpler derivation for our uniform sphere.

Now the key insight is to use the Shell theorem : we split the sphere into concentric
shells and use the fact that :

e A spherical shell with radius 7’ > r contributes zero field at point P inside it

e A spherical shell with radius 7’ < r acts as if all its mass were concentrated at
the center

Therefore, only the mass within radius r contributes to the field :

3
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Since p = 4:;’%3 for a uniform sphere :

forr <R

This shows that:

e At r=0: g =0 (as expected by symmetry)

e Atr=R:g= CEZI (matches surface gravity)

e The field varies linearly with r inside the sphere

4. ALTERNATIVE DERIVATION USING (GAUSS’S LAW

We can also confirm this result using Gauss’s law for gravity :
% g dA = _47TGMenclosed
s

For a Gaussian surface of radius » < R centered at the sphere’s center :

43 p

g(r) - 4mr? = —47G - 3

Solving for g(r) gives the same result.



(1]

[2

[3

[4

=

8

9

(10]

(11]

(12]

REFERENCES

Feynman, R.P., Leighton, R.B., and Sands, M., The Feynman Lectures on Physics, Vol. I,
Addison-Wesley, 1963.

See §13-4: geometric and integral proofs of the shell theorem.

Goldstein, H., Poole, C., and Safko, J., Classical Mechanics, 3rd edition, Addison-Wesley, 2002.
See §2 and Problem 2-9 for derivation and generalization of the axial integral.

Kreyszig, E., Advanced Engineering Mathematics, 10th edition, Wiley, 2011.

Section 10.3, worked problem : gravitational field in a solid sphere using the auxiliary function.
Riley, K.F., Hobson, M.P., and Bence, S.J., Mathematical Methods for Physics and Engineering,
3rd edition, Cambridge University Press, 2006.

Example 3.24 (Electric field of a uniformly charged sphere): analogous integral treatment.
Griffiths, D.J., Introduction to Electrodynamics, 4th edition, Cambridge University Press, 2017.
(Contains analogous treatment for electrostatics.)

Thornton, S.T., and Marion, J.B., Classical Dynamics of Particles and Systems, 5th edition,
Brooks/Cole, 2004.

Examples 5-2 and 5-3 work through both shell and solid sphere gravitation.

Taylor, J.R., Classical Mechanics, University Science Books, 2005.

See §8.3: step-by-step substitution with modern notation for shell gravity.

Kleppner, D., and Kolenkow, R., An Introduction to Mechanics, 2nd edition, Cambridge Univer-
sity Press, 2013.

Example 6.4 explores shell gravity in both cylindrical and spherical coordinates.

Shell Theorem, Wikipedia.

https://en.wikipedia.org/wiki/Shell_theorem

Cline, D., Classical Mechanics, LibreTexts.

Section 2.14, Example 1: complete derivation of gravitational field of a uniform sphere via triple
integral.
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_
in_Classical_Mechanics_(Cline)/02/3A_Review_of_Newtonian_Mechanics/2.14%3A_Newton,
27s_Law_of_Gravitation

Feldman, J., Rechnitzer, E., and Yeager, E., CLP-8 Multivariable Calculus.
https://math.libretexts.org/Bookshelves/Calculus/CLP-3_Multivariable_Calculus_
(Feldman_Rechnitzer_and_Yeager)/03%3A_Multiple_Integrals/3.07%3A_Triple_Integrals_
in_Spherical_Coordinates

Bovy, J., Dynamics and Astrophysics of Galaxies, online textbook.

Section 2.2: Newton’s shell theorems with both Gauss and geometric proofs.
https://galaxiesbook.org/chapters/I-01.-Gravitation_2-Spherical-systems%3A-Newtony
27s-shell-theorems.html

Email address: support@visualis-physics.com

URL: http://www.visualis-physics.com


https://en.wikipedia.org/wiki/Shell_theorem
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/02%3A_Review_of_Newtonian_Mechanics/2.14%3A_Newton%27s_Law_of_Gravitation
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/02%3A_Review_of_Newtonian_Mechanics/2.14%3A_Newton%27s_Law_of_Gravitation
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/02%3A_Review_of_Newtonian_Mechanics/2.14%3A_Newton%27s_Law_of_Gravitation
https://math.libretexts.org/Bookshelves/Calculus/CLP-3_Multivariable_Calculus_(Feldman_Rechnitzer_and_Yeager)/03%3A_Multiple_Integrals/3.07%3A_Triple_Integrals_in_Spherical_Coordinates
https://math.libretexts.org/Bookshelves/Calculus/CLP-3_Multivariable_Calculus_(Feldman_Rechnitzer_and_Yeager)/03%3A_Multiple_Integrals/3.07%3A_Triple_Integrals_in_Spherical_Coordinates
https://math.libretexts.org/Bookshelves/Calculus/CLP-3_Multivariable_Calculus_(Feldman_Rechnitzer_and_Yeager)/03%3A_Multiple_Integrals/3.07%3A_Triple_Integrals_in_Spherical_Coordinates
https://galaxiesbook.org/chapters/I-01.-Gravitation_2-Spherical-systems%3A-Newton%27s-shell-theorems.html
https://galaxiesbook.org/chapters/I-01.-Gravitation_2-Spherical-systems%3A-Newton%27s-shell-theorems.html

	1. Gravity inside a massive sphere
	1.1. Direct Integration
	1.2. Key Insights

	2. Case of a spherical shell
	2.1. Demonstration
	2.2. Physical interpretation

	3. Revisit integration using the Shell Theorem
	4. Alternative derivation using Gauss's law
	References

