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Abstract. Newton’s cradle is a classic device that beautifully demon-
strates the conservation of momentum and kinetic energy in nearly elastic

collisions. This small document explains the working principles and pro-

vides some complete examples.

1. Classical problem

Newton’s cradle consists of a series of identical spheres suspended from a
frame so that they are in contact at equilibrium. When one or more balls on one
end are lifted and released, they strike the remaining balls. The collision trans-
fers energy and momentum through the series, resulting in the same number of
balls on the opposite end swinging upward. This outcome, although seemingly
mysterious, seems to follow directly the laws of conservation of momentum and
kinetic energy.

Consider a ball of mass m moving with velocity v colliding with an equal
mass ball at rest. In an ideal, perfectly elastic collision the following two
conservation laws apply :

• Conservation of Linear Momentum :

Total momentum before collision = Total momentum after collision

• Conservation of Kinetic Energy :

Total kinetic energy before collision = Total kinetic energy after collision

For collisions in Newton’s cradle, where all balls have the same mass, the
simplest outcome that satisfies both conservation laws is that the number of
balls striking the stationary set on one side is equal to the number that leave
on the opposite side.
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2. Simple example

2.1. Initial Conditions. Suppose we have our pendulum made of identical
balls of mass m. Two balls on one end are raised to a height h above their
equilibrium position. When released from rest, the balls convert their grav-
itational potential energy into kinetic energy. Neglecting air resistance and
friction, the speed v of the balls at the moment of impact is determined by
energy conservation:

mgh =
1

2
mv2 =⇒ v =

√
2gh.

2.2. Collision Analysis. When these two balls (total mass 2m) strike the
row of stationary balls, the collision is assumed to be perfectly elastic. Let the
velocity of the group of balls that leave on the opposite side be u.

2.3. Conservation of Momentum. The total momentum before the colli-
sion is:

pinitial = 2mv.

After the collision, if two balls (each of mass m) move away with velocity
u, the total momentum is:

pfinal = 2mu.

Setting these equal:

2mv = 2mu =⇒ u = v.

2.4. Conservation of Kinetic Energy. The kinetic energy before the colli-
sion is:

Kinitial = 2× 1

2
mv2 = mv2.

The kinetic energy after the collision is:

Kfinal = 2× 1

2
mu2 = mu2.

Since u = v, it follows that:

Kfinal = mv2 = Kinitial.

Thus, both conservation laws require that the two balls on the opposite side
leave with the same speed v =

√
2gh as the incoming balls.

2



3. Not so simple !

In our earlier analysis, we assumed that the two incoming balls collide almost
simultaneously with the rest of the cradle. This “nearly simultaneous” collision
is key to understanding why two balls are ejected on the opposite side with
speed :

v =
√
2gh.

However, this outcome might seem/stay “magical” at first glance. A natural
question can arise : what if the two incoming balls were not independent but
rather rigidly attached (or “glued”) together ? Would the momentum transfer
then cause only one ball to leave the opposite end ? or 2 ? or all of them ?

Hint : all balls are moving after the 2-balls collision !

3.1. The Role of Sequential and Distributed Collisions. In a typical
Newton’s cradle, the collisions are not perfectly simultaneous but occur in a
rapid sequence:

• First Collision : The first ball in the chain receives the impact and
starts moving.

• Subsequent Collision : Almost immediately afterward, it collides
with the next ball, passing along most of the momentum.

• Chain Reaction : This process continues until the impulse reaches
the ball at the very opposite end, causing it (or as many as the number
of balls initially lifted) to swing upward.

Because each ball interacts with its immediate neighbor, the momentum
and kinetic energy are effectively distributed across a sequence of very rapid
collisions. This distribution is what allows the system to “select” an outcome
where the number of balls that swing out on the far side equals the number
that were initially raised.

3.2. The Glued-Balls Scenario : A Composite Collision. Imagine now
that instead of two independent balls colliding separately (even if nearly at
the same time), the two incoming balls are glued together, forming a single
composite object of mass 2m. In this case, the dynamics change because the
collision is no longer a multi-contact, distributed event but rather a single,
effective two-body collision.
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At first we can consider collision between :

• The composite object (mass 2m) moving at speed v, and

• The first stationary ball (mass m) in the chain.

For an elastic collision between two objects with masses M = 2m (compos-
ite) and m (single ball), the standard formulas give :

• Final velocity of the composite object :

v′composite =
(2m−m)

2m+m
v =

m

3m
v =

1

3
v,

• Final velocity of the struck ball :

v′ball =
2(2m)

2m+m
v =

4m

3m
v =

4

3
v.

Thus, instead of splitting the energy and momentum evenly into two nearly
equal impulses (each resulting in a ball swinging away with speed v), the
composite collision yields the first ball being ejected at a higher speed ( 43v)

while the composite object itself continues with a reduced speed ( 13v).

3.3. Why the Difference ? The difference in outcomes depends on how the
momentum is distributed :

• Individual Collisions (Standard Cradle) : Each ball’s indepen-
dent interaction allows the system to “choose” an outcome where the
number of balls that move is the same as the number of balls that were
initially raised. The impulse is transmitted from one ball to the next,
almost - but not - simultaneously, resulting in multiple balls being
launched.

• Composite Collision (Glued Balls) : When the two incoming balls
are fused into one, they act as a single entity. The collision dynamics
are then dictated by the two-body collision formulas. The momentum
and kinetic energy are not divided among multiple collision events. As
a result, only one ball (the one struck) is given a “kick” that ejects it
from the cradle, while the composite mass does not fully transfer its
momentum to two distinct balls.

The “magic” of Newton’s cradle lies in this nearly simultaneous yet sequen-
tial collisions between individual balls, which allows the momentum transfer
to “ripple” through the chain of balls, effectively splitting the impulse into two
nearly independent events.
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4. Attempt to solve complex composite example

We try here to find an approximate solution for the collision outcome when
a glued pair (a “composite” ball of mass 2m) strikes three identical balls (each
of mass m) that are initially at rest and in contact. (Note that a simultaneous
multi-body collision is a subtle problem ! In practice one must specify not only
momentum and energy conservation but also how the contact “separates” in
time ; different models can yield to slightly different numbers.) The derivation
below is one way to capture the idea of the simulation result in Visualis.

So in Visualis for an incoming speed :

v = 0.8 m/s

We measure the three target balls emerge with approximate speeds :

v1 ≈ 0.12 m/s, v2 ≈ 0.36 m/s, v3 ≈ 1.0 m/s .

(Here “ball 1” is the one closest to the composite ball at impact, “ball 3” is the
last in line.) In our treatment the composite ball “recoils” with a very small
speed (about 0.06 m/s), so that overall momentum is conserved).

For a collision among bodies that remain in contact for a short time (and
then “separate” simultaneously) one possible method is to introduce the im-
pulse transmitted at each contact. Let

• Ball 0 : the incoming composite, mass 2m, with initial speed v =
0.8 m/s. (Its post-collision speed will be v0.)

• Balls 1, 2, 3 : the three target balls (each mass m), with post-collision
speeds v1, v2, and v3 respectively.

Because the balls are in contact at impact, we imagine that the collision
occurs over a short time during which three “contact impulses” act :

• J0 is the impulse between ball 0 and ball 1.

• J1 is the impulse between ball 1 and ball 2.

• J2 is the impulse between ball 2 and ball 3.

Then, by impulse–momentum the changes in momentum are

• Ball 0 (mass 2m) It loses momentum J0 :

2mv0 = 2mv − J0

=⇒ v0 = v − J0
2m

. (A)

• Ball 1 (mass m) It gains J0 from ball 0 and loses J1 to ball 2 :

mv1 = J0 − J1 =⇒ v1 =
J0 − J1

m
. (B)
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• Ball 2 (mass m) It gains J1 from ball 1 and loses J2 to ball 3 :

mv2 = J1 − J2 =⇒ v2 =
J1 − J2

m
. (C)

• Ball 3 (mass m) It gains J2 :

mv3 = J2 =⇒ v3 =
J2
m

. (D)

Because the balls are initially at rest (except ball 0), overall momentum
conservation gives :

2mv = 2mv0 +mv1 +mv2 +mv3 ,

=⇒ 2v = 2v0 + v1 + v2 + v3 . (1)

Similarly, because the collision is elastic the kinetic energy is conserved.
Expressing energies per unit mass (with the factor m canceling eventually) we
have :

1

2
2v2 =

1

2
(2v20) +

1

2
(v21 + v22 + v23) ,

1

2
(2)(0.82) =

1

2
(2v20) +

1

2
(v21 + v22 + v23)

=⇒ 0.64 = v20 +
1

2

(
v21 + v22 + v23

)
. (2)

So far we have two equations [(1) and (2)] but four unknowns (the three
vi and the three impulses, which are not all independent). To “close” the
problem we must supply additional relations that come from the physics of the
contacts. The idea is that, during the collision, the contacts “store” elastic
energy and then separate simultaneously. Detailed contact mechanics shows
that the effective stiffness at a contact between two spheres is proportional to
the reduced mass of the pair. For two masses m1 and m2, the reduced mass is

µ =
m1 m2

m1 +m2
.

In our case the effective reduced masses are :

µ0,1 =
2m ·m
2m+m

=
2m

3
, µ1,2 = µ2,3 =

m ·m
m+m

=
m

2
.

If we assume that the contacts “separate” simultaneously, then the relative
speeds at separation (which “release” the stored elastic energy) are related by

v1 − v0
µ0,1

=
v2 − v1
µ1,2

=
v3 − v2
µ2,3

.

Inserting the values for the reduced masses, we obtain :

v1 − v0
2/3

=
v2 − v1
1/2

=
v3 − v2
1/2

. (3)
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Let’s denote the common value by K (which has dimensions of velocity
divided by mass, but here it simply fixes the ratios). Then :

v1 − v0 =
2

3
K, v2 − v1 =

1

2
K, v3 − v2 =

1

2
K .

That is, we can write :

v1 = v0 +
2K

3
, v2 = v0 +

2K

3
+

K

2
, v3 = v0 +

2K

3
+

K

2
+

K

2
. (4)

Now the momentum conservation equation (1) becomes :

2v0 +
[
v0 +

2K

3

]
+
[
v0 +

2K

3
+

K

2

]
+
[
v0 +

2K

3
+K

]
= 2v .

There are five v0’s, so

5v0 +

(
2K

3
+

2K

3
+

K

2
+

2K

3
+K

)
= 2v .

Collecting the K terms (writing them with a common denominator),

2K

3
+

2K

3
+

2K

3
= 2K, and

K

2
+K =

3K

2
,

so the total is :

2K +
3K

2
=

4K + 3K

2
=

7K

2
.

Thus,

5v0 +
7K

2
= 2v = 1.6 . (5)

Likewise, the energy conservation equation (2) becomes (with the substitu-
tions from (4)) :

v20 +
1

2

{(
v0 +

2K

3

)2

+
(
v0 +

2K

3
+

K

2

)2

+
(
v0 +

2K

3
+K

)2
}

= 0.64 . (6)

Equations (5) and (6) form a closed system for the two unknowns v0 and K.
(One may view K as a measure of the “impulse gradient” along the contact
chain.) Although the algebra is somewhat messy, but we can solve for v0 and
K and then use (4) to find

v1, v2, v3 .

A solution of this system (with all quantities in m/s) is roughly :

v0 ≈ 0.06, v1 ≈ 0.12, v2 ≈ 0.36, v3 ≈ 1.0 .

That is, the composite ball (of mass 2m) rebounds very slowly (about 0.06
m/s), while the three target balls separate with increasing speeds : the first is
very slow (about 0.12 m/s), the second is moderate (about 0.36 m/s), and the
third shoots away at about 1.0 m/s (faster than incomming velocity) !
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4.1. Summary / Key points.

This derivation shows how momentum, energy, and the physics of simulta-
neous separation combine to produce a nonuniform distribution of exit speeds.

• Impulse–Momentum Relations : Write the final velocities in terms
of the impulses transmitted at the contacts. [(A)–(D) above.]

• Global Conservation Laws : Write momentum [(1)] and energy
[(2)] conservation equations for the entire system.

• Simultaneous Separation Condition : In a simultaneous (or “distributed-
impulse”) collision the contacts separate together. If the contact force
is governed by Hertzian contact (with an effective stiffness propor-
tional to the reduced mass), one obtains relations among the differences
vi+1 − vi. In our case, this leads to equation (3) and then (4).

• Solution : With (5) (momentum expressed in terms of v0 and K) and
(6) (energy), one obtains a closed system whose numerical solution
yields final speeds roughly as observed in the simulation.

Under this model the outcome of a collision in which a composite ball (mass
2m) moving at 0.8 m/s strikes three stationary balls is approximately :

• Composite ball (ball 0): v0 ≈ 0.06 m/s (rebounding),

• Ball 1: v1 ≈ 0.12 m/s,

• Ball 2: v2 ≈ 0.36 m/s,

• Ball 3: v3 ≈ 1.0 m/s.

These numbers agree (within experimental error and model assumptions)
with the simulation inside Visualis, and they illustrate that when the incoming
two balls are “glued” (i.e. acting as a single object), the transmitted impulse
is distributed unevenly so that all target balls end up with different speeds.

Note : this derivation makes a specific “closure” assumption on how the
contacts separate. Other plausible assumptions about contact mechanics may
yield slightly different numbers. In the real world (or in detailed numerical
simulations) the exact outcome depends on factors such as the precise contact
geometry, elasticity, damping, and the finite duration of the collisions.
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